1. Akhriev, A., Marecek, J., Simonetto, A.: Pursuit of low-rank models of time-varying matrices robust to sparse and measurement noise. Preprint
arXiv:1809.03550
(2018, submitted)
2. Dutta, A., Li, X., Richtarik, P.: Weighted low-rank approximation of matrices and background modeling. Preprint
arXiv:1804.06252
(2018, submitted)
3. Jahrer, M., Töscher, A., Legenstein, R.: Combining predictions for accurate recommender systems. In: KDD, pp. 693–702. ACM (2010)
4. Li, B., Tata, S., Sismanis, Y.: Sparkler: supporting large-scale matrix factorization. In: EDBT, pp. 625–636. ACM (2013)
5. Li, X., Dutta, A.: Weighted low rank approximation for background estimation problems. In: ICCVW, pp. 1853–1861, October 2017