1. Atighehchian, P., Branchaud-Charron, F., Lacoste, A.: Bayesian active learning for production, a systematic study and a reusable library (2020)
2. Bondu, A., Lemaire, V., Boullé, M.: Exploration vs. exploitation in active learning: a Bayesian approach. In: IJCNN, pp. 1–7 (2010)
3. Lecture Notes in Computer Science;Z Chen,2022
4. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.: Deep learning for classical Japanese literature. CoRR abs/1812.01718 (2018)
5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data (2019)