1. Atkinson, T., Plump, D., Stepney, S.: Evolving graphs by graph programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 35–51. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_3. https://eprints.whiterose.ac.uk/126500/1/AtkinsonPlumpStepney.EuroGP.18.pdf
2. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Thierens, D., et al. (eds.) GECCO 2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1580–1587. ACM Press, London, 7–11 July 2007. https://doi.org/10.1145/1276958.1277276. https://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1580.pdf
3. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Grefenstette, J.J. (ed.) Proceedings of an International Conference on Genetic Algorithms and the Applications, Carnegie-Mellon University, Pittsburgh, PA, USA, 24–26 July 1985, pp. 183–187 (1985). https://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/icga1985/icga85_cramer.pdf
4. Forsyth, R.: BEAGLE a Darwinian approach to pattern recognition. Kybernetes 10(3), 159–166 (1981). https://doi.org/10.1108/eb005587. https://www.richardsandesforsyth.net/pubs/beagle81.pdf
5. Hicklin, J.: Application of the genetic algorithm to automatic program generation. Master’s thesis, University of Idaho (1986)