Optimization of Silicon Tandem Solar Cells Using Artificial Neural Networks
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-34885-4_30
Reference17 articles.
1. Roessner, J.D.: Government-industry relationships in technology commercialization: the case of photovoltaics. Sol. Cells 5(2), 101–134 (1982)
2. Third Generation Photovoltaics (2012)
3. Gul, M., Kotak, Y., Muneer, T.: Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 34(4), 485–526 (2016)
4. Ramaprabha, R., Gothandaraman, V., Kanimozhi, K., Divya, R., Mathur, B.L.: Maximum power point tracking using GA-optimized artificial neural network for solar PV system. In: 2011 1st International Conference on Electrical Energy Systems, pp. 264–268. IEEE, January 2011
5. Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancements in performance of zinc oxide/carbon quantum dots based photovoltaic trigeneration system using genetic algorithm and particle swarm optimization;Sustainable Energy Technologies and Assessments;2023-12
2. Optical Optimization of Tandem Solar Cells: A Systematic Review for Enhanced Power Conversion;Nanomaterials;2023-11-21
3. Artificial Neural Network Modeling for Optimization with High-Efficiency In0.2Ga0.8N/GaN MQW Solar Cell at High Temperature;2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE);2023-10-12
4. Artificial neural network modeling for potential performance enhancement of a planar perovskite solar cell with a novel TiO2/SnO2 electron transport bilayer using nonlinear programming;Energy Reports;2022-11
5. The development of a neural network model for the structural improvement of perovskite solar cells using an evolutionary particle swarm optimization algorithm;Journal of Computational Electronics;2021-01-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3