1. Baxter, J., Tridgell, A., Weaver, L.: Learning to play chess using temporal differences. Mach. Learn. 40(3), 243–263 (2000)
2. Bom, L., Henken, R., Wiering, M.: Reinforcement learning to train Ms. Pac-Man using higher-order action-relative inputs. In: 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 156–163 (2013)
3. de Bruin, T., Kober, J., Tuyls, K., Babuška, R.: The importance of experience replay database composition in deep reinforcement learning. In: Deep Reinforcement Learning Workshop, NIPS (2015)
4. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2015)
5. Ganzfried, S., Sandholm, T.: Game theory-based opponent modeling in large imperfect-information games. In: the 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pp. 533–540. International Foundation for Autonomous Agents and Multiagent Systems (2011)