1. M. Sadiq, D. Shi, M. Guo, X. Cheng, Facial landmark detection via attention-adaptive deep network. IEEE Access 7, 181041–181050 (2019)
2. J. Bai, W. Yu, Z. Xiao, et al., Two-stream spatial-temporal graph convolutional networks for driver drowsiness detection. IEEE Trans. Cybern. 52, 13821–13833 (2022)
3. M. Zhu, D. Shi, M. Zheng, M. Sadiq, Robust Facial Landmark Detection via Occlusion-adaptive Deep Networks (2019). https://doi.org/10.1109/CVPR.2019.00360
4. S. Pachouly, N. Bhondve, A. Dalvi, et al., Driver drowsiness detection using machine learning with visual behaviour. Int. J. Creat. Res. 8, 1975 (2020)
5. W. Kongcharoen, S. Nuchitprasitchai, Y. Nilsiam, J.M. Pearce, Real-time eye state detection system for driver drowsiness using convolutional neural network, in 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2020, (Institute of Electrical and Electronics Engineers Inc, 2020), pp. 551–554