Author:
Sharma Pulkit,Mirzan Shezan Rohinton,Bhandari Apurva,Pimpley Anish,Eswaran Abhiram,Srinivasan Soundar,Shao Liqun
Publisher
Springer International Publishing
Reference20 articles.
1. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 96–103 (2008)
2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41, 1–58 (2009)
3. Cuzzocrea, A., Mumolo, E., Cecolin, R.: Runtime anomaly detection in embedded systems by binary tracing and hidden Markov models. In 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 2, pp. 15–22 (2015)
4. Duque Anton, S., Sinha, S., Schotten, H.: Anomaly-based intrusion detection in industrial data with SVM and random forests, pp. 1–6 (2019)
5. Gentzel, A., Garant, D., Jensen, D.: The case for evaluating causal models using interventional measures and empirical data. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 11722–11732. Curran Associates Inc. (2019)