Publisher
Springer Nature Switzerland
Reference19 articles.
1. Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., et al.: Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66, 15–23 (2022). https://doi.org/10.1016/j.breast.2022.08.010
2. Vodenčarević, A., Kreuzeder, J., Wöckel, A., Fasching, P.A.: Prediction of QT prolongation in advanced breast cancer patients using survival modelling algorithms. In: Proceedings of the 12th International Conference on Data Science, Technology and Applications DATA, vol. 1, pp. 164–172. SciTePress, Rome, Italy (2023). https://doi.org/10.5220/0012130900003541
3. Common Terminology Criteria for Adverse Events (CTCAE) Homepage, https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm, v5.0 published 2017/11/27
4. Amouheidari, A., Alirezaei, Z., Rauh, S., Hassanpour, M.: PrACTiC: a predictive algorithm for chemoradiotherapy-induced cytopenia in glioblastoma patients. J. Oncol. 2022, 1438190 (2022). https://doi.org/10.1155/2022/1438190
5. Li, M., Wang, Q., Lu, P., Zhang, D., Hua, Y., Liu, F., et al.: Development of a machine learning-based prediction model for chemotherapy-induced myelosuppression in children with Wilms’ tumor. Cancers 15(4), 1078 (2023). https://doi.org/10.3390/cancers15041078