NVUM: Non-volatile Unbiased Memory for Robust Medical Image Classification

Author:

Liu Fengbei,Chen Yuanhong,Tian Yu,Liu Yuyuan,Wang Chong,Belagiannis Vasileios,Carneiro Gustavo

Publisher

Springer Nature Switzerland

Reference31 articles.

1. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

2. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems, pp. 1567–1578 (2019)

3. Demner-Fushman, D., et al.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inform. Assoc. 23(2), 304–310 (2016)

4. Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adaptation layer (2016)

5. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attentional decoder networks for chest X-ray image recognition on high-resolution features;Computer Methods and Programs in Biomedicine;2024-06

2. Robust Stochastic Neural Ensemble Learning With Noisy Labels for Thoracic Disease Classification;IEEE Transactions on Medical Imaging;2024-06

3. Long-Tailed Multi-Label Classification with Noisy Label of Thoracic Diseases from Chest X-Ray;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

4. Growth threshold for pseudo labeling and pseudo label dropout for semi-supervised medical image classification;Engineering Applications of Artificial Intelligence;2024-04

5. A Comparative Study of Noisy Label Detection Techniques in a Thai Hospital's Chest X-Ray Database;2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3