1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638–1649. ACL, Santa Fe, NM, USA (2018). https://www.aclweb.org/anthology/C18-1139
2. Apotheke-Adhoc: Von Jameda zur Konkurrenz geschickt. [sent by Jameda to the competitors]. https://www.apotheke-adhoc.de/nachrichten/detail/apothekenpraxis/von-jameda-zur-konkurrenz-geschickt-bewertungsportale/ (2018). Accessed 28 Oct 2019
3. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the 7th LREC, vol. 10, pp. 2200–2204. ELRA (2010)
4. Beltagy, I., Lo, K., Cohan, A.: SCIBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, pp. 3615–3620. ACL (2019)
5. Bidmon, S., Elshiewy, O., Terlutter, R., Boztug, Y.: What patients value in physicians: Analyzing drivers of patient satisfaction using physician-rating website data. J. Med. Internet Res. 22(2), e13830 (2020). https://doi.org/10.2196/13830