1. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit problem. In: Proceedings of the 25th Annual Conference on Learning Theory, pp. 39.1–39.26. JMLR Workshop and Conference Proceedings, June 2012
2. Alemdar, H., Van Kasteren, T., Ersoy, C.: Active learning with uncertainty sampling for large scale activity recognition in smart homes. IOS Press 9, 209–223 (2017)
3. Anahideh, H., Asudeh, A., Thirumuruganathan, S.: Fair Active Learning, March 2021. arXiv:2001.01796 [cs, stat]
4. Arora, S., Nyberg, E., Rosé, C.P.: Estimating annotation cost for active learning in a multi-annotator environment. In: Proceedings of the NAACL HLT 2009 Workshop on Active Learning for Natural Language Processing - HLT ’09, p. 18. Association for Computational Linguistics, Boulder, Colorado (2009). https://doi.org/10.3115/1564131.1564136
5. Bächle, M., Kirchberg, P.: Ruby on rails. IEEE Softw. 24(6), 105–108 (2007). https://doi.org/10.1109/MS.2007.176