1. Alves-Dias, M. (1998). Les problèmes d’articulation entre points de vue cartésien et paramétrique dans l’enseignement de l’algèbre linéaire. Histoire et perspectives sur les mathématiques, PhD Thesis, Université Denis Diderot Paris 7.
2. Artigue, M. (2016). Mathematics Education Research at University Level: Achievements and Challenges. First conference of International Network for Didactic Research in University Mathematics, Montpellier, France. hal-01337874.
3. Bašić, M., & Milin Šipuš, Ž. (2019), Students’ understanding of the interplay between geometry and algebra in multidimensional analysis: representations of curves and surfaces, CERME 11, Utrecht, The Netherlands. hal-02422575.
4. Biza, I. (2017). “Points”, “slopes” and “derivatives”: Substantiations of narratives about tangent line in university mathematics students’ discourses. CERME 10, Dublin, Ireland. hal-01941655.
5. Bos, R., Doorman, M., Cafuta, K., Praprotnik, S., Antoliš, S., & Bašić, M. (2019). Supporting the reinvention of the slope of a curve in a point, CERME 11, Utrecht, The Netherlands.