1. Conti, E., Madhavan, V., Petroski Such, F., et al.: Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS 2018), pp. 5032–5043. Curran Associates Inc., Red Hook (2018)
2. Fekiač, J., Zelinka, I., Burguillo, J.: A review of methods for encoding neural network topologies in evolutionary computation. In: European Conference on Modelling and Simulation (2016)
3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)
4. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1703.00548 (2017)
5. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. In: Advances in Neural Information Processing Systems, vol. 12 (2000)