1. Ashok, P., Hashemi, V., Křetínský, J., Mohr, S.: DeepAbstract: neural network abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for Verification and Analysis. ATVA 2020. LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_5
2. Bassan, S., Katz, G.: Towards formal XAI: formally approximate minimal explanations of neural networks. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2023. LNCS, vol. 13993, pp. 187–207. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-9_10
3. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR abs/1604.07316 (2016)
4. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21, 42:1–42:39 (2020)
5. Carlini, N., Katz, G., Barrett, C., Dill, D.L.: Provably minimally-distorted adversarial examples (2018)