Publisher
Springer International Publishing
Reference20 articles.
1. Saffarzadeh, V.M., Shadgar, B., Osareh, A.: Vessel segmentation in retinal images using multi-scale line operator and K-means clustering. J. Med. Signals Sens. 4(2), 122–129 (2013)
2. Xie, S., Nie, H.: Retinal vascular image segmentation using genetic algorithm plus FCM clustering. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications (2013)
3. Ella Hassanien, A., El-bendary, N., Fahmy, A., Hassan, G.: Blood vessel segmentation approach for extracting the vasculature on retinal fundus images using Particle Swarm Optimization. In: 2015 11th International Computer Engineering Conference (ICENCO) (2015)
4. Shi, Z., Wang, T., Huang, Z., Xie, F., Liu, Z., Wang, B., Xu, J.: MD-Net: a multi-scale dense network for retinal vessel segmentation. Biomed. Sig. Process. Control 70, 102977 (2021)
5. Sun, M., Li, K., Qi, X., Dang, H., Zhang, G.: Contextual information enhanced convolutional neural networks for retinal vessel segmentation in color fundus images. J. Vis. Commun. Image Represent. 77, 103134 (2021)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Preprocessing retinal fundus images to localize lesions for identification of diabetic eye diseases;SECOND INTERNATIONAL CONFERENCE ON INNOVATIONS IN SOFTWARE ARCHITECTURE AND COMPUTATIONAL SYSTEMS (ISACS 2022);2023