Generality-Training of a Classifier for Improved Calibration in Unseen Contexts

Author:

Leelar Bhawani ShankarORCID,Kull MeelisORCID

Abstract

AbstractArtificial neural networks tend to output class probabilities that are miscalibrated, i.e., their reported uncertainty is not a very good indicator of how much we should trust the model. Consequently, methods have been developed to improve the model’s predictive uncertainty, both during training and post-hoc. Even if the model is calibrated on the domain used in training, it typically becomes over-confident when applied on slightly different target domains, e.g. due to perturbations or shifts in the data. The model can be recalibrated for a fixed list of target domains, but its performance can still be poor on unseen target domains. To address this issue, we propose a generality-training procedure that learns a modified head for the neural network to achieve better calibration generalization to new domains while retaining calibration performance on the given domains. This generality-head is trained on multiple domains using a new objective function with increased emphasis on the calibration loss compared to cross-entropy. Such training results in a more general model in the sense of not only better calibration but also better accuracy on unseen domains, as we demonstrate experimentally on multiple datasets. The code and supplementary for the paper is available (https://github.com/bsl-traveller/CaliGen.git).

Publisher

Springer Nature Switzerland

Reference45 articles.

1. Krishnan, R., Tickoo, O.: Improving model calibration with accuracy versus uncertainty optimization. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18237–18248 (2020)

2. Kumar, A., Sarawagi, S., Jain, U.: Trainable calibration measures for neural networks from kernel mean embeddings. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2805–2814. PMLR (2018). https://proceedings.mlr.press/v80/kumar18a.html

3. Mukhoti, J., et al.: Calibrating deep neural networks using focal loss. In: Larochelle, H., et al. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 15288–15299. Curran Associates Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf

4. Lin, T.-Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

5. Cheng, J., Vasconcelos, N.: Calibrating deep neural networks by pairwise constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13709–13718 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3