1. Krishnan, R., Tickoo, O.: Improving model calibration with accuracy versus uncertainty optimization. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18237–18248 (2020)
2. Kumar, A., Sarawagi, S., Jain, U.: Trainable calibration measures for neural networks from kernel mean embeddings. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2805–2814. PMLR (2018). https://proceedings.mlr.press/v80/kumar18a.html
3. Mukhoti, J., et al.: Calibrating deep neural networks using focal loss. In: Larochelle, H., et al. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 15288–15299. Curran Associates Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf
4. Lin, T.-Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
5. Cheng, J., Vasconcelos, N.: Calibrating deep neural networks by pairwise constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13709–13718 (2022)