1. Tsui, E., Gao, S., Xu, D., Wang, H., Green, P.: Knowledge-based anti-money laundering: a software agent bank application. J. Knowl. Manage. (2009)
2. Breslow, S., Hagstroem, M., Mikkelsen, D., Robu, K. The new frontier in anti-money laundering McKinsey Insights, November 2017. https://www.mckinsey.com/business-functions/risk/our-insights/the-new-frontier-in-anti-money-laundering
3. Kotsiantis, S., Koumanakos, E., Tzelepis, D., Tampakas, V.: Forecasting fraudulent financial statements using data mining. Int. J. Comput. Intell. 3(2), 104–110 (2006)
4. Jayasree, V., Siva Balan, R.V.: Money laundering regulatory risk evaluation using bitmap index-based decision tree. J. Assoc. Arab Univ. Basic Appl. Sci. 23(1), 96–102 (2017)
5. Nielsen, D.: Tree boosting with XGBoost - why does XGBoost win “every” machine learning competition? Master’s Thesis, NTNU (2016)