1. Adam-Bourdarios, C., Cowan, G., Germain-Renaud, C., Guyon, I., Kégl, B., Rousseau, D.: The higgs machine learning challenge. J. Phys.: Conf. Ser. 634, 072015.
https://doi.org/10.1088/1742-6596/664/7/072015
2. Chen, T., He, T.: Higgs Boson Discovery with Boosted Trees. In: JMLR: Workshop and Conference Proceedings, vol. 42, pp. 69–80 (2015)
3. Baldi, P., Cranmer, K., Faucett T., Sadowski P., Whiteson, D.: Parameterized machine learning for high-energy physics. Eur. Phys. J. 76: 235–241 (2016).
https://doi.org/10.1140/epjc/s10052-016-4099-4
4. Sadowski, P.J., Whiteson, D., Baldi, P.: Searching for higgs boson decay modes with deep learning. In: Advances in Neural Information Processing Systems (NIPS), vol. 27 (2014)
5. Sadowski, P., Collado, J., Whiteson, D., Baldi, P.: Deep learning, dark knowledge, and dark matter. In: JMLR: Workshop and Conference Proceedings, vol. 42, pp. 81–97 (2015)