Author:
Pinilla Jose P.,Wilton Steven J. E.
Publisher
Springer International Publishing
Reference48 articles.
1. Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks, p. 18, October 2015. arXiv preprint:
arXiv:1510.06356
2. Amin, M.H., Andriyash, E., Rolfe, J., et al.: Quantum Boltzmann machine. Phys. Rev. X 8(2) (2018).
https://doi.org/10.1103/PhysRevX.8.021050
3. Asghar, A., Parvez, H.: An improved diffusion based placement algorithm for reducing interconnect demand in congested regions of FPGAs. Int. J. Reconfigurable Comput. 2015, 1–10 (2015).
http://www.hindawi.com/journals/ijrc/2015/756014/
4. Benedetti, M., Realpe-Gómez, J., Perdomo-Ortiz, A.: Quantum-assisted Helmholtz machines: a quantum-classical deep learning framework for industrial datasets in near-term devices. Quantum Sci. Technol. 3(3), 34007 (2018).
https://doi.org/10.1088/2058-9565/aabd98
5. Bian, Z., Chudak, F., Israel, R., et al.: Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2, 56 (2014).
http://journal.frontiersin.org/article/10.3389/fphy.2014.00056
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献