Heat and Climate Change Mitigation

Author:

Hays Dirk B.,Barrios-Perez Ilse,Camarillo-Castillo Fatima

Abstract

AbstractHigh temperature stress is a primary constraint to maximal yield in wheat, as in nearly all cultivated crops. High temperature stress occurs in varied ecoregions where wheat is cultivated, as either a daily chronic metabolic stress or as an acute episodic high heat shock during critical periods of reproductive development. This chapter focuses on defining the key biochemical processes regulating a plant’s response to heat stress while highlighting and defining strategies to mitigate stress and stabilize maximal yield during high temperature conditions. It will weigh the advantages and disadvantages of heat stress adaptive trait breeding strategies versus simpler integrated phenotypic selection strategies. Novel remote sensing and marker-assisted selection strategies that can be employed to combine multiple heat stress tolerant adaptive traits will be discussed in terms of their efficacy. In addition, this chapter will explore how wheat can be re-envisioned, not only as a staple food, but also as a critical opportunity to reverse climate change through unique subsurface roots and rhizomes that greatly increase wheat’s carbon sequestration.

Funder

International Maize and Wheat Improvement Center

Bill and Melinda Gates Foundation

Publisher

Springer International Publishing

Reference41 articles.

1. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka S, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649. https://doi.org/10.5194/essd-8-605-2016

2. Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J, Smith P, Wood S, Zomer RJ, von Unger M, Emmer IM, Griscom BW (2020) The role of soil carbon in natural climate solutions. Nat Sustain 3:391–398. https://doi.org/10.1038/s41893-020-0491-z

3. Hunt JR, Hayman PT, Richards RA, Passioura JB (2018) Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management. Field Crop Res 224:126–138. https://doi.org/10.1016/j.fcr.2018.05.012

4. Powell N, Ji X, Ravash R, Edlington J, Dolferus R (2012) Yield stability for cereals in a changing climate. Funct Plant Biol 39:539–552

5. Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123. https://doi.org/10.1016/j.plantsci.2007.03.004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3