Publisher
Springer International Publishing
Reference35 articles.
1. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0
2. Susan, S., Kumar, A.: SSOMaj-SMOTE-SSOMin: three-step intelligent pruning of majority and minority samples for learning from imbalanced datasets. Appl. Soft Comput. 78, 141–149 (2019)
3. Ling, C.X., Sheng, V.S.: Cost-sensitive learning and the class imbalance problem. Encycl. Mach. Learn. 2008, 231–235 (2011)
4. Susan, S., Kumar, A.: The balancing trick: optimized sampling of imbalanced datasets—a brief survey of the recent State of the Art. Eng. Rep. 3(4), e12298 (2021)
5. Mienye, I.D., Sun, Y.: Performance analysis of cost-sensitive learning methods with application to imbalanced medical data. Inform. Med. Unlocked 25, 100690 (2021)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献