Detecting Phishing Websites with Random Forest
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-00557-3_46
Reference9 articles.
1. Phishing—What Is Phishing?. Phishing.org (2018). http://www.phishing.org/what-is-phishing .)
2. Dong, Z., Kapadia, A., Blythe, J., Camp, L.J.: Beyond the lock icon: real-time detection of phishing websites using public key certificates. In: 2015 APWG Symposium on Electronic Crime Research (eCrime). IEEE (2015)
3. Rao, R., Ali, S.: PhishShield: a desktop application to detect phishing webpages through heuristic approach. Procedia Comput. Sci. 54, 147–156 (2015)
4. Rao, R.S., Pais, A.R.: Detecting phishing websites using automation of human behavior. In: Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security - CPSS 17 (2017). https://doi.org/10.1145/3055186.3055188
5. Kumar, B., Kumar, P., Mundra, A., Kabra, S.: DC scanner: detecting phishing attack. In: 2015 Third International Conference on Image Information Processing (ICIIP) (2015). https://doi.org/10.1109/iciip.2015.7414779
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AntiPhishStack: LSTM-Based Stacked Generalization Model for Optimized Phishing URL Detection;Symmetry;2024-02-17
2. BaitNet: A Deep Learning Approach for Phishing Detection;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04
3. CheckPhish: Leveraging A Machine Learning Approach for Detecting Phishing Websites;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06
4. OFMCDM/IRF: A Phishing Website Detection Model based on Optimized Fuzzy Multi-Criteria Decision-Making and Improved Random Forest;2023 Silicon Valley Cybersecurity Conference (SVCC);2023-05-17
5. Classification of Phishing Websites using Machine Learning Models;2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP);2023-03-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3