Author:
Privatto Pedro Ivo Monteiro,Guilherme Ivan Rizzo
Publisher
Springer International Publishing
Reference33 articles.
1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA, pp. 1638–1649. Association for Computational Linguistics (August 2018). https://www.aclweb.org/anthology/C18-1139
2. Baevski, A., Edunov, S., Liu, Y., Zettlemoyer, L., Auli, M.: Cloze-driven pretraining of self-attention networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, pp. 5360–5369. Association for Computational Linguistics (November 2019). https://doi.org/10.18653/v1/D19-1539. https://www.aclweb.org/anthology/D19-1539
3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Computat. Linguist. 5, 135–146 (2017). https://doi.org/10.1162/tacl_a_00051. https://www.aclweb.org/anthology/Q17-1010
4. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, vol. 2, pp. 2787–2795. Curran Associates Inc., Red Hook (2013). https://doi.org/10.5555/2999792.2999923
5. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016). https://www.aclweb.org/anthology/Q16-1026