Author:
Bammert Lukas-Malte,Kramer Stefan,Cerrato Mattia,Althaus Ernst
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-preserving decision trees training and prediction. Cryptology ePrint Archive, Paper 2021/768 (2021). https://eprint.iacr.org/2021/768
2. Althaus, E., Dousti, M.S., Kramer, S., Rassau, N.J.P.: Fast private parameter learning and evaluation for sum-product networks. CoRR abs/2104.07353 (2021). https://arxiv.org/abs/2104.07353
3. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 805–817. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978331
4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006