1. Beel, J.: Federated meta-learning: Democratizing algorithm selection across disciplines and software libraries. Science (AICS) 210, 219 (2018)
2. Chen, F., Dong, Z., Li, Z., He, X.: Federated meta-learning for recommendation. arXiv preprint arXiv:1802.07876 (2018)
3. Chen, Y., Sun, X., Jin, Y.: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation. IEEE Trans. Neural Netw. Learn. Syst. (2019)
4. Corinzia, L., Buhmann, J.M.: Variational federated multi-task learning. arXiv preprint arXiv:1906.06268 (2019)
5. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.B.: The Non-IID data quagmire of decentralized machine learning. arXiv preprint arXiv:1910.00189 (2019)