Author:
Akshara A.,Chitra P.,Sahana S.
Publisher
Springer Nature Switzerland
Reference13 articles.
1. Nash, W., Zheng, L., Birbilis, N.: Deep learning corrosion detection with confidence. NPJ Mater. Degradation 6(1), 26 (2022)
2. Petricca, L., Moss, T., Figueroa, G., Broen, S.: Corrosion detection using AI: a comparison of standard computer vision techniques and deep learning model. In: Proceedings of the Sixth International Conference on Computer Science, Engineering and Information Technology, vol. 91, no. 2–16, p. 99 (2016)
3. Ossai, C.I.: A data-driven machine learning approach for corrosion risk assessment—a comparative study. Big Data Cogn. Comput. 3(2), 28 (2019)
4. Yin, B., et al.: Corrosion image data set for automating scientific assessment of materials. In: British Machine Vision Conference (BMVC), pp. 1–15 (2021)
5. Nash, W., Drummond, T., Birbilis, N.: Quantity beats quality for semantic segmentation of corrosion in images. arXiv preprint arXiv:1807.03138 (2018)