Adaptive Thermal Error Compensation Model of a Horizontal Machining Centre

Author:

Horejš Otakar,Mareš Martin,Straka Michal,Švéda Jiří,Kozlok Tomáš

Abstract

AbstractThe state-of-the-art method to reduce CNC machine tool thermal errors is real-time error compensation based on the thermal error estimation models. However, it is difficult to establish a thermal error compensation model with good versatility, high accuracy, and strong robustness due to various manufacturing conditions and a thermally varying surrounding environment. It causes that thermal behaviour of the machine tools is nonlinear and varying in real time. Consequently, the pre-trained and non-adaptive model may not be accurate and robust enough for long-term application. The presented research shows a systematic adaptation technique to update the thermal error compensation model of a horizontal machining centre under varying conditions, which differ from the calibration test. System identification theory is applied to build a dynamic thermal error model for a horizontal machining centre based on calibration test. Linear parametric models of autoregressive with external input (ARX) present an established dynamic method, and its modelling and calculation speed are suitable for real-time applications. Additionally, process-intermittent probing and thermal error model are integrated into the machine management software of the horizontal machining centre to monitor and compensate for thermal errors at the tool centre point (TCP) in real time using C#/C++ programming language. The results show that the prediction accuracy measured as peak-to-peak values and the normalized root mean squared error of the thermal error compensation models are improved by up to 33% and 51%, respectively, when adaptive compensation model is applied.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3