Thermally Induced Clamping Force Deviations in a Sensory Chuck for Thin-Walled Workpieces

Author:

Denkena Berend,Klemme Heinrich,Wnendt Eike,Meier Matthias

Abstract

AbstractDeviations between nominal and actual tolerances are a challenging problem during turning processes of thin-walled workpieces. One main cause of these deviations is the clamping force applied by the turning chuck to hold the workpiece. Due to the low stiffness of thin-walled workpieces, large workpiece deformations can occur even when clamping forces are low. For this reason, the clamping force needs to be precisely adjusted. A possible approach are chucks with integrated actuators. As a result of the more direct power transmission, these chucks have a potentially higher clamping force accuracy compared to conventional external actuation. However, integrated actuators are additional heart sources resulting in thermal loads and thermally induced deformations of the chuck components. Due to the resulting mechanical distortion of the chuck system, the precise adjustment of clamping forces is not possible. Thus, this paper evaluates the thermally induced clamping force deviations on a novel turning chuck with four integrated electric drives. A test bench is used to analyse both a single drive and the combination of all four drives regarding the temperature effect on the clamping force adjustability. A clamping force deviation of up to 26% is observed. Based on the measured chuck temperature, a compensation method is introduced leading to a clamping force accuracy of 96.9%.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3