1. Atashgahi, Z., et al.: Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders. Mach. Learn. 1–38 (2022)
2. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, New York (2015)
3. Challu, C., Olivares, K.G., Oreshkin, B.N., Garza, F., Mergenthaler, M., Dubrawski, A.: N-hits: neural hierarchical interpolation for time series forecasting. arXiv preprint arXiv:2201.12886 (2022)
4. Chen, T., Cheng, Y., Gan, Z., Yuan, L., Zhang, L., Wang, Z.: Chasing sparsity in vision transformers: an end-to-end exploration. Adv. Neural. Inf. Process. Syst. 34, 19974–19988 (2021)
5. Chen, T., et al.: The lottery ticket hypothesis for pre-trained BERT networks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 15834–15846 (2020)