Physical Modeling of Grinding Forces

Author:

Kästner F.,de Payrebrune K. M.

Abstract

AbstractIn order to address the increasing demands on precision in manufacturing, the prediction of various processes by model-based methods is increasingly becoming a key technology. With respect to this, the grinding process still reveals a lot of potential in terms of reliable predictions. In order to exploit this potential and to improve the understanding of the process itself, a physical force model is developed. Here, process-typical influencing factors, as well as commonly used cooling lubricants, are considered. In addition to the simulative effort for the actual model, basic experimental investigations have to be carried out. In single scratch tests, it has been found that process and deformation mechanisms such as rubbing, ploughing, and cutting of the material and also the pile-up of this material on both sides of the cutting grain are significantly involved in the development of forces. It also turned out that the resulting forces are greater when cooling lubricants are used and that the topographic characteristics of a scratch are also affected by them. For a realistic mapping of these effects within the force model, the deformation model, according to Johnson and Cook, and a discretization, according to Arbitrary Lagrangian-Eulerian, proved most suitable. For integrating the cooling lubricants, the Reynolds equation using a subroutine proves to be a suitable instrument. The challenge to complete the force model is combining the scratch and the Reynolds equation simulation.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3