Author:
Kästner F.,de Payrebrune K. M.
Abstract
AbstractIn order to address the increasing demands on precision in manufacturing, the prediction of various processes by model-based methods is increasingly becoming a key technology. With respect to this, the grinding process still reveals a lot of potential in terms of reliable predictions. In order to exploit this potential and to improve the understanding of the process itself, a physical force model is developed. Here, process-typical influencing factors, as well as commonly used cooling lubricants, are considered. In addition to the simulative effort for the actual model, basic experimental investigations have to be carried out. In single scratch tests, it has been found that process and deformation mechanisms such as rubbing, ploughing, and cutting of the material and also the pile-up of this material on both sides of the cutting grain are significantly involved in the development of forces. It also turned out that the resulting forces are greater when cooling lubricants are used and that the topographic characteristics of a scratch are also affected by them. For a realistic mapping of these effects within the force model, the deformation model, according to Johnson and Cook, and a discretization, according to Arbitrary Lagrangian-Eulerian, proved most suitable. For integrating the cooling lubricants, the Reynolds equation using a subroutine proves to be a suitable instrument. The challenge to complete the force model is combining the scratch and the Reynolds equation simulation.
Publisher
Springer International Publishing