Embedding-Space Explanations of Learned Mixture Behavior

Author:

Sohns J.-T.,Gond D.,Jirasek F.,Hasse H.,Weber G. H.,Leitte H.

Abstract

AbstractData-driven machine learning (ML) models are attracting increasing interest in chemical engineering and already partly outperform traditional physical simulations. Previous work in this field has mainly focused on improving the models’ statistical performance while the thereby imparted knowledge has been taken for granted. However, also the structures learned by the model during the training are fascinating yet non-trivial to assess as they are usually high-dimensional. As such, the interpretable communication of the relationship between the learned model and domain knowledge is vital for its evaluation by applying engineers. Specifically, visual analytics enables the interactive exploration of data sets and can thus reveal structures in otherwise too large-scale or too complex data. This chapter focuses on the thermodynamic modeling of mixtures of substances using the so-called activity coefficients as exemplary measures. We present and apply two visualization techniques that enable analyzing high-dimensional learned substance descriptors compared to chemical domain knowledge. We found explanations regarding chemical classes for most of the learned descriptor structures and striking correlations with physicochemical properties.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3