Investigation of Micro Grinding via Kinematic Simulations

Author:

Altherr N.,Kirsch B.,Aurich J. C.

Abstract

AbstractWith increasing demand for micro structured surfaces in hard and brittle materials, the importance of micro grinding increases. The application of micro pencil grinding tools (MPGTs) in combination with ultra precision multi axes machine tools allow an increased freedom of shaping. However, small dimensions of the grinding tools below 500 µm substantiate high rotational speeds and low feed rates to enable the machining process. Besides, the abrasive grits of the tool can be large in comparison to the tool dimensions. All factors will influence the resulting surface topography of the workpiece. But some of the topography properties are no longer accessible for optical measurements, making process evaluations and improvements difficult.In the present contribution the measurement results are supplemented by the results of a kinematic simulation model. The built up of such a kinematic simulation is described, which considers real process and tool properties. The results received by the simulation are compared to measurements to validate the model and point out the advantages of the simulations. In a further step, a principle is shown how the simulation can be used to make the undeformed chip thickness accessible, a process result which cannot be measured within the real machining process.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3