Phase Field Simulations for Fatigue Failure Prediction in Manufacturing Processes

Author:

Yan S.,Müller R.,Ravani B.

Abstract

AbstractFatigue failure is one of the most crucial issues in manufacturing and engineering processes. Stress cycles can cause cracks to form and grow over time, eventually leading to structural failure. To avoid these failures, it is important to predict fatigue crack evolution behavior in advance. In the past decade, the phase field method for crack evoluation analysis has drawn a lot of attention for its application in fracture mechanics. The biggest advantage of the phase field model is its uniform description of all crack evolution behaviors by one evolution equation. The phase field method simultaneously models crack nucleation and crack propagation which will be particularly useful manufacturing problems. In this work, we show that the phase field method is capable to reproduce the most important fatigue features, e.g., Paris’ law, mean stress effect, and load sequence effects. For efficient computing, a “cycle”- “time” transformation is introduced to convert individual cycle numbers into a continuous time domain. In order to exploit the symmetry property of the demonstrated examples, a phase field model in cylindrical coordinates is presented. Finally, the fatigue modeling approach presented is applied to study a cold forging process in manufacturing.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3