Parsimonious Optimal Dynamic Partial Order Reduction

Author:

Abdulla Parosh AzizORCID,Atig Mohamed FaouziORCID,Das SarbojitORCID,Jonsson BengtORCID,Sagonas KonstantinosORCID

Abstract

AbstractStateless model checking is a fully automatic verification technique for concurrent programs that checks for safety violations by exploring all possible thread schedulings. It becomes effective when coupled with Dynamic Partial Order Reduction (DPOR), which introduces an equivalence on schedulings and reduces the amount of needed exploration. DPOR algorithms that are optimal are particularly effective in that they guarantee to explore exactly one execution from each equivalence class. Unfortunately, existing sequence-based optimal algorithms may in the worst case consume memory that is exponential in the size of the analyzed program. In this paper, we present Parsimonious-OPtimal DPOR (POP), an optimal DPOR algorithm for analyzing multi-threaded programs under sequential consistency, whose space consumption is polynomial in the worst case. POP combines several novel algorithmic techniques, including (i) a parsimonious race reversal strategy, which avoids multiple reversals of the same race, (ii) an eager race reversal strategy to avoid storing initial fragments of to-be-explored executions, and (iii) a space-efficient scheme for preventing redundant exploration, which replaces the use of sleep sets. Our implementation in Nidhugg shows that these techniques can significantly speed up the analysis of concurrent programs, and do so with low memory consumption. Comparison to TruSt, a related optimal DPOR algorithm that represents executions as graphs, shows that POP ’s implementation achieves similar performance for smaller benchmarks, and scales much better than TruSt ’s on programs with long executions.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3