Abstract
Abstract
This is the first chapter to explicitly address fluid media. For springs and solids, Hooke’s law, or its generalization using stress, strain, and elastic moduli provided an equation of state. In fluids, we have an equation of state that relates changes in pressure (stresses) to changes in density (strain). The simplest fluidic equations of state are the Ideal Gas Laws. Our presentation of these laws will combine microscopic models that treat gas atoms as hard spheres with phenomenological (thermodynamic) models that combine the variables that describe the gas with conservation laws that restrict those variables. The combination of microscopic and phenomenological models will give us the important characteristics of gas behavior under isothermal or adiabatic conditions and will provide relationships between gas heat capacities and their constituent particles when augmented with elementary concepts from quantum mechanics. The chapter ends by adding a velocity field to the pressure, temperature, and density, thus providing the equations of hydrodynamics that will guide all of the subsequent development of acoustics in fluids.
Publisher
Springer International Publishing
Reference12 articles.
1. A. Swaminathan, S.L. Garrett, M.E. Poese, R.W.M. Smith, Dynamic stabilization of the Rayleigh-Bénard instability by acceleration modulation. J. Acoust. Soc. Am. 144(4), 2334–2343 (2018)
2. U. S. Department of Labor, Occupational Safety & Health Administration, Standards – 29 CFR, Standard No. 1910.95(b)(1), Table G-16 – Permissible Noise Exposure
3. U. S. Standard Atmosphere, 1976 (National Oceanic and Atmospheric Administration, Report S/T 76-1562 (1976)
4. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol I (Addison-Wesley, Reading, 1963)
5. P.J. Mohr, D.B. Newell, B.N. Taylor, E. Tiesinga, Data and analysis for the CODATA 2017 special fundamental constants adjustment. Metrologia 55, 125–146 (2017)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pervasive Pose Estimation for Fall Detection;ACM Transactions on Computing for Healthcare;2022-04-07