High Resolution Numerical Weather Simulation for Orographic Precipitation as an Accurate Early Warning Tool for Landslide Vulnerable Terrains

Author:

Bandara H. A. A. I. S.,Onishi Ryo

Abstract

AbstractAccurate early warning for rain-induced landslides is still challenging due to regional and local variations of rainfall prediction due to low accuracy, and resolution. The “Multi-Scale Simulator for the Geoenvironment (MSSG)” system, developed by the Tokyo Institute of Technology, Japan Agency for Marine-Earth Science and Technology and Waseda University allows for high-resolution simulations and seamless modeling of weather and climate interactions, and employs advanced meteorological aspects.MSSG simulations compared with rainfall data recorded in the Aranayaka automated rain gauge for past events, including the devastating landslide in 2016. The simulations achieved satisfactory results in reproducing rainfall events. Higher-resolution simulations exhibited higher maximum rainfall intensity and cumulative rainfall accumulation. This study emphasizes the importance of considering finer scales in meteorological simulations to effectively capture the intricate variations associated with extreme rainfall events. This study places significant emphasis on the importance of considering finer scales in meteorological simulations in order to confirm the necessity of high resolutions to capture the temporal and spatial variations of orographic rainfall.

Publisher

Springer Nature Switzerland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3