Publisher
Springer Nature Switzerland
Reference15 articles.
1. Buhrmester, V., Münch, D., Arens, M.: Analysis of explainers of black box deep neural networks for computer vision: a survey. Mach. Learn. Knowl. Extract. 3(4), 966–989 (2021)
2. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
3. Hakkoum, H., Abnane, I., Idri, A.: Interpretability in the medical field: a systematic mapping and review study. Appl. Soft Comput. 117, 108391 (2022). https://doi.org/10.1016/j.asoc.2021.108391, (Accessed 5 Sep 2023)
4. Huilgol, P.: Precision and recall essential metrics for machine learning. https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/ (Sep 2020), (Accessed 28 Feb 2024)
5. Jung, Y., Kim, T., Han, M.R., Kim, S., Kim, G., Lee, S., Choi, Y.J.: Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder. Sci. Rep. 12(1), 1–10 (2022), (Accessed 4 Sep 2023)