Publisher
Springer Nature Switzerland
Reference25 articles.
1. Behrisch, M.: All centralising monoids with binary operations as witnesses on the set $$\lbrace 0, 1, 2, 3\rbrace $$. Zenodo (2021). https://doi.org/10.5281/zenodo.5428986
2. Behrisch, M.: Centralising monoids with conservative majority operations as witnesses. In: Proceedings 51st ISMVL 2021, Nur-Sultan, Kazakhstan, 25–27 May 2021, pp. 56–61. IEEE, Los Alamitos (2021). https://doi.org/10.1109/ISMVL51352.2021.00019
3. Behrisch, M.: All centralising monoids with majority witnesses on a four-element set. J. Mult.-Valued Logic Soft Comput. 38(1–2), 23–56 (2022), https://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-38-number-1-2-2022/mvlsc-38-1-2-p-23-56/
4. Behrisch, M., Couceiro, M., Kearnes, K.A., Lehtonen, E., Szendrei, Á.: Commuting polynomial operations of distributive lattices. Order 29(2), 245–269 (2012). https://doi.org/10.1007/s11083-011-9231-3
5. Behrisch, M., Renkin, L.: All centralising monoids on the set $$\lbrace 0, 1, 2\rbrace $$, including their witnesses. Zenodo (2023). https://doi.org/10.5281/zenodo.7641814