Abstract
AbstractUp until now we have dealt with evolutionary equations of the form
$$\displaystyle \big (\overline {\partial _{t,\nu }M(\partial _{t,\nu })+A}\big )U=F $$
(
∂
t
,
ν
M
(
∂
t
,
ν
)
+
A
¯
)
U
=
F
for some given
$$F\in L_{2,\nu }(\mathbb {R};H)$$
F
∈
L
2
,
ν
(
ℝ
;
H
)
for some Hilbert space H, a skew-selfadjoint operator A in H and a material law M defined on a suitable half-plane satisfying an appropriate positive definiteness condition with
$$\nu \in \mathbb {R}$$
ν
∈
ℝ
chosen suitably large. Under these conditions, we established that the solution operator, "Equation missing", is eventually independent of ν and causal; that is, if F = 0 on
$$\left (-\infty ,a\right ]$$
−
∞
,
a
for some
$$a\in \mathbb {R}$$
a
∈
ℝ
, then so too is U.
Publisher
Springer International Publishing
Reference7 articles.
1. P. Cojuhari, A. Gheondea, Closed embeddings of Hilbert spaces. J. Math. Anal. Appl. 369(1), 60–75 (2010)
2. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, vol. 194. Graduate Texts in Mathematics. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli, R. Schnaubelt (Springer, New York, 2000)
3. R.S. Palais, Seminar on the Atiyah-Singer Index Theorem. With contributions by M.F. Atiyah, A. Borel, E.E. Floyd, R.T. Seeley, W. Shih, R. Solovay. Annals of Mathematics Studies, vol. 57 (Princeton University Press, Princeton, NJ, 1965)
4. R. Picard, D. McGhee, Partial Differential Equations: A Unified Hilbert Space Approach, vol. 55. Expositions in Mathematics (DeGruyter, Berlin, 2011)
5. R. Picard, Evolution equations as operator equations in lattices of Hilbert spaces. Glas. Mat. Ser. III 35(55), 1 (2000). Dedicated to the memory of Branko Najman, pp. 111–136