Abstract
AbstractLet H be a Hilbert space and
$$\nu \in \mathbb {R}$$
ν
∈
ℝ
. We saw in the previous chapter how initial value problems can be formulated within the framework of evolutionary equations. More precisely, we have studied problems of the form
$$\displaystyle \begin{aligned} \begin {cases} \left (\partial _{t,\nu }M_{0}+M_{1}+A\right )U=0 & \text{ on }\left (0,\infty \right ),\\ M_{0}U(0{\scriptstyle {+}})=M_{0}U_{0} \end {cases} \end{aligned} $$
∂
t
,
ν
M
0
+
M
1
+
A
U
=
0
on
0
,
∞
,
M
0
U
(
0
+
)
=
M
0
U
0
for U0 ∈ H, M0, M1 ∈ L(H) and
$$A\colon \operatorname {dom}(A)\subseteq H\to H$$
A
:
dom
(
A
)
⊆
H
→
H
skew-selfadjoint; that is, we have considered material laws of the form
$$\displaystyle M(z)\mathrel{\mathop:}= M_{0}+z^{-1}M_{1}\quad (z\in \mathbb {C}\setminus \{0\}). $$
M
(
z
)
: =
M
0
+
z
−
1
M
1
(
z
∈
ℂ
∖
{
0
}
)
.
Publisher
Springer International Publishing