1. Sharma, S., Singh, S.: Recognition of Indian Sign Language (ISL) Using Deep Learning Model. Wireless Pers Commun. 123, 671–692 (2022). https://doi.org/10.1007/s11277-021-09152-1.
2. Adeyanju, I.A., Bello, O.O., Adegboye, M.A.: Machine learning methods for sign language recognition: A critical review and analysis. Intelligent Systems with Applications. 12, 200056 (2021). https://doi.org/10.1016/j.iswa.2021.200056.
3. Tornay, S., Aran, O., Magimai Doss, M.: An HMM Approach with Inherent Model Selection for Sign Language and Gesture Recognition. In: Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., and Piperidis, S. (eds.) Proceedings of the Twelfth Language Resources and Evaluation Conference. pp. 6049–6056. European Language Resources Association, Marseille, France (2020).
4. De Souza, C.R., Pizzolato, E.B.: Sign Language Recognition with Support Vector Machines and Hidden Conditional Random Fields: Going from Fingerspelling to Natural Articulated Words. In: Perner, P. (ed.) Machine Learning and Data Mining in Pattern Recognition. pp. 84–98. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39712-7_7.
5. Jain, V., Jain, A., Chauhan, A., Kotla, S.S., Gautam, A.: American Sign Language recognition using Support Vector Machine and Convolutional Neural Network. Int. J. Inf. Technol. 13, 1193–1200 (2021). https://doi.org/10.1007/s41870-021-00617-x.