1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org
2. Ahmad, R.W., Gani, A., Hamid, S.H.A., Xia, F., Shiraz, M.: A review on mobile application energy profiling: taxonomy, state-of-the-art, and open research issues. J. Netw. Comput. Appl. 58, 42–59 (2015)
3. Bridges, R.A., Imam, N., Mintz, T.M.: Understanding GPU power: a survey of profiling, modeling, and simulation methods. ACM Comput. Surv. 49(3), 1–27 (2016)
4. Cai, E., Juan, D.C., Stamoulis, D., Marculescu, D.: Neuralpower: predict and deploy energy-efficient convolutional neural networks. In: Asian Conference on Machine Learning, pp. 622–637. PMLR (2017)
5. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid-State Circuits 52(1), 127–138 (2016)