Author:
Alsuhli Ghada,Sakellariou Vasilis,Saleh Hani,Al-Qutayri Mahmoud,Mohammad Baker,Stouraitis Thanos
Publisher
Springer Nature Switzerland
Reference16 articles.
1. Zhang, X., Liu, S., Zhang, R., Liu, C., Huang, D., Zhou, S., Guo, J., Guo, Q., Du, Z., Zhi, T., et al.: Fixed-point back-propagation training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2330–2338 (2020)
2. Guo, J.I., Tsai, C.C., Zeng, J.L., Peng, S.W., Chang, E.C.: Hybrid fixed-point/binary deep neural network design methodology for low-power object detection. IEEE J. Emerging Sel. Top. Circuits Syst. 10(3), 388–400 (2020)
3. Mellempudi, N., Kundu, A., Das, D., Mudigere, D., Kaul, B.: Mixed Low-Precision Deep Learning Inference Using Dynamic Fixed Point (2017). arXiv:1701.08978
4. Lai, L., Suda, N., Chandra, V.: Deep Convolutional Neural Network Inference with Floating-Point Weights and Fixed-Point Activations (2017). arXiv:1703.03073
5. Lin, W.H., Kao, H.Y., Huang, S.H.: Hybrid dynamic fixed point quantization methodology for AI accelerators. In: International SoC Design Conference (ISOCC), pp. 282–283. IEEE (2021)