1. Aldeghi, M., Graff, D.E., Frey, N., et al.: Roughness of molecular property landscapes and its impact on modellability. J. Chem. Inf. Model. 62(19), 4660–4671 (2022). https://doi.org/10.1021/acs.jcim.2c00903
2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR (2017)
3. Austin, J., Johnson, D.D., Ho, J., Tarlow, D., van den Berg, R.: Structured denoising diffusion models in discrete state-spaces. In: Advances in Neural Information Processing Systems, vol. 34, pp. 17981–17993. Curran Associates, Inc. (2021)
4. Bacciu, D., Podda, M.: GraphGen-redux: a fast and lightweight recurrent model for labeled graph generation. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021). https://doi.org/10.1109/IJCNN52387.2021.9533743
5. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood aggregation for graph nets. In: Advances in Neural Information Processing Systems, vol. 33, pp. 13260–13271. Curran Associates, Inc. (2020)