Publisher
Springer Nature Switzerland
Reference15 articles.
1. Cha, Y., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 32, 361–378 (2017). https://doi.org/10.1111/mice.12263
2. Denton, E.L., Chintala, S., Szlam, A.D., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)
3. Chen, C., et al.: Automatic pavement crack detection based on image recognition. In: International Conference on Smart Infrastructure and Construction 2019 (ICSIC) (2019). https://doi.org/10.1680/ICSIC.64669.361
4. Wang, J., Bian, Y.: Deep convolution generative adversarial network (DCGAN). Mol. Pharmaceutics 16(11), 4451–4460 (2019). https://doi.org/10.1021/acs.molpharmaceut.9b00500
5. Ellingson, S.R., Davis, B., Allen, J.E.: Machine learning and ligand binding predictions: a review of data, methods, and obstacles. Biochimica Biophys. Acta Gener. Subjects 129545. (2020). https://doi.org/10.1016/j.bbagen.2020.129545
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献