A Topological Clustering of Individuals

Author:

Abdesselam Rafik

Abstract

AbstractThe clustering of objects-individuals is one of the most widely used approaches to exploring multidimensional data. The two common unsupervised clustering strategies are Hierarchical Ascending Clustering (HAC) and k-means partitioning used to identify groups of similar objects in a dataset to divide it into homogeneous groups. The proposed Topological Clustering of Individuals, or TCI, studies a homogeneous set of individual rows of a data table, based on the notion of neighborhood graphs; the columns-variables are more-or-less correlated or linked according to whether the variable is of a quantitative or qualitative type. It enables topological analysis of the clustering of individual variables which can be quantitative, qualitative or a mixture of the two. It first analyzes the correlations or associations observed between the variables in a topological context of principal component analysis (PCA) or multiple correspondence analysis (MCA), depending on the type of variable, then classifies individuals into homogeneous group, relative to the structure of the variables considered. The proposed TCI method is presented and illustrated here using a real dataset with quantitative variables, but it can also be applied with qualitative or mixed variables.

Publisher

Springer International Publishing

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3