Supervised Classification via Neural Networks for Replicated Point Patterns

Author:

Pawlasová Kateřina,Karafiátová Iva,Dvořák Jiří

Abstract

AbstractA spatial point pattern is a collection of points observed in a bounded region of $${\bf{\mathbb{R}}}^d$$, $$d \ge 2$$. Individual points represent, e.g., observed locations of cell nuclei in a tissue (d = 2) or centers of undesirable air bubbles in industrial materials (d = 3). The main goal of this paper is to show the possibility of solving the supervised classification task for point patterns via neural networks with general input space. To predict the class membership for a newly observed pattern, we compute an empirical estimate of a selected functional characteristic (e.g., the pair correlation function). Then, we consider this estimated function to be a functional variable that enters the input layer of the network. A short simulation example illustrates the performance of the proposed classifier in the situation where the observed patterns are generated from two models with different spatial interactions. In addition, the proposed classifier is compared with convolutional neural networks (with point patterns represented by binary images) and kernel regression. Kernel regression classifiers for point patterns have been studied in our previous work, and we consider them a benchmark in this setting.

Publisher

Springer International Publishing

Reference17 articles.

1. Allaire, J. J., Eddelbuettel, D., Golding, N., Tang, Y.: tensorflow: R Interface to TensorFlow (2016) Available at GitHub. https://github.com/rstudio/tensorflow.Cited10Jan2022

2. Ayala, G., Epifanio, I., Simo, A., Zapater, V.: Clustering of spatial point patterns. Comput. Stat. Data. Anal. 50, 1016–1032 (2006)

3. Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. Chapman & Hall/CRC Press, Boca Raton (2015)

4. Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Theory and Practice. Springer-Verlag, New York (2006)

5. Cholaquidis, A., Forzani, L., Llop, P., Moreno, L.: On the classification problem for Poisson point processes. J. Multivar. Anal. 153, 1–15 (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3