Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models

Author:

Perrone Gabriele,Soffritti Gabriele

Abstract

AbstractIn recent years, the research into linear multivariate regression based on finite mixture models has been intense. With such an approach, it is possible to perform regression analysis for a multivariate response by taking account of the possible presence of several unknown latent homogeneous groups, each of which is characterised by a different linear regression model. For a continuous multivariate response, mixtures of normal regression models are usually employed. However, in real data, it is not unusual to observe mildly atypical observations that can negatively affect the estimation of the regression parameters under a normal distribution in each mixture component. Furthermore, in some fields of research, a multivariate regression model with a different vector of covariates for each response should be specified, based on some prior information to be conveyed in the analysis. To take account of all these aspects, mixtures of contaminated seemingly unrelated normal regression models have been recently developed. A further extension of such an approach is presented here so as to ensure parsimony, which is obtained by imposing constraints on the group-covariance matrices of the responses. A description of the resulting parsimonious mixtures of seemingly unrelated contaminated regression models is provided together with the results of a numerical study based on the analysis of a real dataset, which illustrates their practical usefulness.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3