Generalized Spatio-Temporal Regression with PDE Penalization

Author:

Arnone Eleonora,Cunial Elia,Sangalli Laura M.

Abstract

AbstractWe develop a novel generalised linear model for the analysis of data distributed over space and time. The model involves a nonparametric term 5, a smooth function over space and time. The estimation is carried out by the minimization of an appropriate penalized negative log-likelihood functional, with a roughness penalty on 5 that involves space and time differential operators, in a separable fashion, or an evolution partial differential equation. The model can include covariate information in a semi-parametric setting. The functional is discretized by means of finite elements in space, and B-splines or finite differences in time. Thanks to the use of finite elements, the proposed method is able to efficiently model data sampled over irregularly shaped spatial domains, with complicated boundaries. To illustrate the proposed model we present an application to study the criminality in the city of Portland, from 2015 to 2020.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3