1. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Rob. 2(3), 107–116 (2015)
2. Krishnakumar, N., Guhan, M., Krishnan, R.V., Kaarthicsudhan, S.M.: Design and analysis of robotic gripper with complaint mechanism. Int. J. Innov. Sci. Res. Technol. 7(11), 2016–2021 (2022)
3. Tran, N.T., Dao, T.-P., Nguyen-Trang, T., Ha, C.-N.: Prediction of fatigue life for a new 2-DOF compliant mechanism by clustering-based ANFIS approach. Math. Probl. Eng. 2021, 1–14 (2021)
4. Le Chau, N., Dao, T.-P., Nguyen, V.T.T.: An efficient hybrid approach of finite element method, artificial neural network-based multiobjective genetic algorithm for computational optimization of a linear compliant mechanism of nanoindentation tester. Math. Probl. Eng. 2018, 1–19 (2018)
5. Cáceres-C, C., Cuan-Urquizo, E., Alfaro-Ponce, M.: Compliant cross-axis joints: a tailoring displacement range approach via lattice flexures and machine learning. Appl. Sci. 12(13), 6635 (2022)